
From Interaction to Integration: Advancing Optimal
Human-Robot Interfaces for Underwater

Manipulation
Paulo Padrao, Jose Fuentes, Leonardo Bobadilla

Knight Foundation School of Computing
and Information Sciences

Florida International University
Miami, FL 33199

Email: ppadraol@fiu.edu

Tero Kaarlela
Centria University

of Applied Sciences
Ylivieska, Finland

Email: tero.kaarlela@centria.fi

Alfredo Bayuelo
National University of Colombia

Bogotá, Colombia
Email: ajbayuelos@unal.edu.co

Abstract—Underwater operations involve interaction with the
environment, but such interactions can be hazardous or detri-
mental to the underwater ecosystem. Therefore, it is essential to
develop teleoperation systems that prioritize user comfort while
minimizing environmental impact. In this study, we build upon
previous research to enhance teleoperation systems specifically
designed for underwater manipulation. We introduce robot
components that enable interaction with the environment, par-
ticularly focusing on the robot’s gripper. Through the utilization
of hand movements, which are translated using Convolutional
Neural Networks, we demonstrate the ability to achieve delicate
and precise control over the robot’s gripper motion. To validate
our approach, we provide simulations that accurately represent
the behavior of the real hardware involved in the teleoperation
system.

I. INTRODUCTION

Underwater robots are becoming increasingly essential tools
for studying, monitoring, and managing coastal and estuaries
environments. These environments are critical for numerous
applications, including coastal conservation, coral restoration,
and oil rig maintenance.

Moreover, emerging applications include a large degree of
freedom manipulators [17, 2] and underwater humanoids [5].
These platforms motivate the need for more intuitive Human-
Robot Interfaces that can capture natural motions that a
remote operator can do to transmit these motions to a remote
underwater complex robot.

In this short paper, we will extend our work Padrao et al.
[15] where we proposed and showed that intuitive teleopera-
tion interfaces are also optimal. The contributions of this paper
are the following:

• Extended our problem formulation to include the robot’s
equipment that can be utilized to interact with the envi-
ronment. In this case, we consider the robot’s gripper;

• We propose an extension that decouples the gripper from
the rest of the robot, as we could require soft movements
that can only be performed by using the user’s hands;

• Simulation results are provided for evaluation.

II. RELATED WORK

The physical qualities of the water as a communication
media prevents using Radio Frequency (RF) waves as a
wireless communication method of teleoperation. Instead,
acoustic and optical communications have been researched
and utilized [16]. Both enable wireless underwater com-
munication with either low bandwidth or limited usability.
Acoustic modems are limited in bandwidth, allowing only low-
resolution and low-quality video transmission [1]. While opti-
cal modems enable higher bandwidth than acoustic modems,
the trade-off is the requirement for line-of-sight between the
transmitter and the receiver. Maintaining line-of-sight between
the ROV and the above-surface transmitter requires sophisti-
cated tracking electronics and actuators [10]. In any of these
modalities, the transmission of information can be limited and
must be carefully measured.

Underwater teleoperation relies on robotic platforms such
as ROVs and autonomous underwater vehicles (AUVs). These
platforms are designed to be robust, durable, and capable
of operating effectively in harsh and challenging conditions.
This paper uses BlueROV2 [3], an open-source ROV platform
provided in a six-thruster vectored configuration. BlueROV2
has been utilized in a wide variety of applications such as
inspection [18], autonomous navigation [4], and education [8]
of underwater robotics. QGroundControl (QGC) is the default
open-source remote control and mission planning software
for BlueROV2 [6]. BlueROV2 and QGC were utilized in the
presented solution because both are open solutions, enabling
hardware and software customization.

Different simulators are available for the BlueROV2 hard-
ware, such as Orca4 [12] and BlueSim [7]. Orca4, a set
of ROS2 packages, provides AUV support for BlueROV2.
The Ardupilot ROS2 module offers low-level support for
thruster control, and the Gazebo simulator provides a high-
level interface for monitoring and controlling the BlueROV2.
To create a three-dimensional pose of the ROV, Orca4 uses
the real-time SLAM library ORB SLAM2 [14].Orca4 [12] is

a set of ROS2 packages to provide autonomous underwater
vehicle support for the BlueROV2. The Ardupilot ROS2
module provides low-level support to control thrusters, and the
Gazebo simulator provides a high-level interface to monitor
and control the BlueROV2. Orca4 utilizes real-time SLAM
library ORB SLAM2 [14] to create a three-dimensional pose
of the ROV.

In this paper, we use the BlueSim simulator provided by
Bluerobotics Inc. BlueSim is implemented with the open-
source game engine Godot [11] and enables users to connect
and control a simulated BlueROV2 utilizing QGC. In addition,
BlueSim allows the user to visualize the environment by
providing two virtual camera views of the simulated underwa-
ter environment. Together with the BlueSim, we use Google
Mediapipe framework [13] which includes the Convolution
Neural Network (CNN) implementations allowing robots to
recognize objects, facial expressions, and hand gestures.

III. METHODS

In this work, we consider an extension of our work con-
sidered in Padrao et al. [15]; this work considers the task of
visual-based teleoperation of an underwater vehicle. In this
scenario, two agents are involved, the person teleoperating
the robot and the robot itself. Both have a workspace, an
action space, and a state space. For easiness, let us remind
the necessary notation. Consider Wo ⊂ R3 and Wr ⊂ R3 to
be the workspaces for the operator and the robot, respectively;
Co and Cr be their configuration spaces. We denote by U the
set of controls applicable to the robot and A the set of actions
the human operator can perform. The robot’s dynamics is ruled
by the relation given by the function f : Cr × U −→ Cr

ẋ = f(x, u). (1)

Since a person is making use of the teleoperation system,
it is required to map the user’s actions to the robot’s actions
through a map g : Cr ×A −→ U so that the robot is affected
by actions taken by the user.

ẋ = f(x, g(x, a)). (2)

So g is intended to translate the user’s commands into
the robot’s commands. For multiple reasons, this function g
should comply with several principles to capture stability and
comfort. Also, they aim to preserve part of the configuration
space structure such as Continuity, Linearity, Consistency and
Reachability described in detail in Hauser [9], Padrao et al.
[15]. Define aθ and aψ to be the head pitch and head yaw
commands, respectively, and uθ and uψ to be the robot camera
tilt command and yaw command of the robot base. Also, let vo
and vr be the linear forward velocities of the operator and the
robot in [m/s], respectively. We consider that the depth of the
operator and ROV can be set directly by the action variables
az and uz in [m], respectively. Also, we include the hand
actions that are intended to manage the robot’s gripper. The
user’s actions aclose and aopen and the robot’s actions uclose
and uopen indicate how opened or closed the user’s hands and

the robot’s gripper respectively. Then, we define the action
space of the operator as

A = (aθmin, aθmax)× (aψmin, aψmax)× (vomin, vomax)

× (azmin, azmax)× (aclose, aopen) (3)

and the action space of the robot as

U = (uθmin, uθmax)× (uψmin, uψmax)× (vrmin, vrmax)

× (uzmin, uzmax)× (uclose, uopen). (4)

Finding an appropriate function, denoted as g, to translate
user commands into the robot’s actions is a crucial aspect of
developing an effective teleoperation system. In this context,
we examine a general formulation where the suitability of
function g is determined by minimizing a customized func-
tional, denoted as J(g):

J(g) =

∫ T

0

L(x, g,Dg), dt, (5)

Here, L represents a cost function, and Dn denotes the
nth derivative of g. The time interval [0, T] signifies the
duration during which the teleoperation task is executed.
It is worth noting that this approach is not limited to the
presented formulation. It is possible to incorporate task-related
constraints, incorporate non-integral terms, and explore more
comprehensive versions of (5). For instance, in our recent
work Padrao et al. [15], we consider a functional, denoted
as (6), which addresses the challenge of moving the robot
from an initial state xinitial to a desired state xfinal = x(T)
while the robot adheres to the dynamics specified in (2).
In this context, the function g is considered to be a linear
transformation represented by a matrix G, such that the robot’s
command u(t) and the user’s action a(t) are related through
u(t) = g(a(t)) = Ga(t). This representation offers several
advantages as it satisfies principles such as linearity and
continuity directly by adopting this structure for the function
g.

Specifically, the functional seeks to find the optimal map
G and the user’s optimal actions a(t) by minimizing the
following expression:

min
g,a

α||xfinal − x(T)||2 + β

∫ T

0

a(t)⊤Ma(t)dt

+ γ

∫ T

0

||ẋ(t)||dt+ δ dist(G,O(2)).

S.t. ẋ(t) =

cos(θ(t)) 0
sin(θ(t)) 0

0 1

u(t), x(0) = xinitial.

(6)

In this formulation, M is a positive-definite matrix, O(2)
represents the set of orthogonal 2× 2 matrices, xfinal denotes
the target point, and the coefficients α, β, γ, and δ are non-
negative regularization coefficients that determine the relative
importance of each term.

Fig. 1. An example of human-robot action space translation

An illustrative example of the translation between human
and robot actions is depicted in Fig.1. This mapping is consid-
ered intuitive and natural, as many systems employ similar ap-
proaches to handle comparable scenarios. Our previous work
Padrao et al. [15] demonstrated that this assignment, which
involves body movements but excludes hand movements, not
only possesses these desirable attributes but also satisfies the
optimality conditions described in (6). Building upon this
result, our current work extends the approach to include
hand movements for operating the robot’s integrated gripper,
thereby enabling user interaction with the environment.

We have separated the task of managing the gripper from
the task of driving the robot, as we believe that the former
necessitates delicate movements that cannot be adequately
achieved solely through the body movements depicted in
Fig.1. In this particular case, since we have two user hand
movements, namely opening and closing the hand, mapped to
two robot actions, namely opening and closing the gripper, it
is evident that in order to maintain the properties that ensure
comfortable and intuitive usage, the mapping described in
Fig.1 satisfactorily fulfills these requirements.

IV. RESULTS

This work employed a Software-in-the-Loop (SIL) ap-
proach. Instead of using actual hardware, the SIL configuration
utilized the BlueSim hardware simulator [7]. For the develop-

ment and configuration of the software components, the SIL
configuration incorporated the BlueSim hardware simulator as
a substitute for real hardware. The BlueSim simulator emulates
the BlueROV2 hardware [3] and includes a virtual camera unit,
which allows for testing and refining the system. Once fully
operational, the proposed architecture is illustrated in Figure
2.

Fig. 2. Proposed architecture for human-robot interface [15]

By integrating the Google Mediapipe framework [13] with
our system, we established a connection between recognized
hand gestures and the BlueSim gripper. This integration al-
lowed us to effortlessly translate the identified gestures into
precise commands that directed the actions of the BlueSim
gripper, resulting in an intuitive user experience.

For gesture recognition, our architecture consisted of a 6-
layer sequential model. The input layer is a one-dimensional
array with a length of 21 multiplied by 2. That covers all hand
landmarks as shown in Figure 3. The second layer is a 20%-
dropout layer used for regularization and to prevent overfitting.
The third layer is a fully connected layer with 20 units and a
ReLU activation function. Then, another dropout layer follows
with a dropout rate of 40%, and the subsequent dense layer has
ten units and also uses the ReLU activation function. Finally,
the output layer has the number of classes as its units (in this
case 2), and it uses the softmax activation function. This layer
produces output probabilities for each class, representing the
likelihood of the input belonging to each class. In total, our
model has 1,092 parameters. For model compilation, our loss
function consisted of the sparse categorical cross-entropy, and
we used a stochastic gradient descent method based on the
Adam optimization. We trained our model for 1,000 epochs

with a batch size of 128 and obtained an accuracy of 0.981.
Hand gesture detection results are shown in Figure 4, and
the integration with BlueSim can be found at https://youtu.be/
EXK2kUNe4rA.

Fig. 3. Hand landmarks [13]

Fig. 4. Hand gesture detection results. The first column illustrates two distinct
configurations for detecting open hands while the second column describes
potential configurations associated with closed hands

V. CONCLUSION

This paper continues our work aiming to control an ROV
using natural body movements. Previously we proposed a
novel concept for controlling ROV directional movements by
capturing and translating teleoperator head motions into con-
trol commands of the ROV; now, the previous work is extended
by enabling the teleoperator to control ROV gripper states
using hand gestures. The proposed system utilizes Google
Media Pipeline to identify the open and closed states of the
teleoperator hand, and a Python script translates recognized
states into corresponding control commands of the gripper.

The proposed solution enables to control of an ROV gripper
using hand gestures. The system proposed is scalable and,
in addition to controlling a robot gripper, can be utilized to
control other systems requiring binary control. In the future
Hardware-in-the-loop (HIL) should be enabled, to control
physical ROV and gripper in addition to simulated ones.

Furthermore, haptics for the grasping would provide a realistic
teleoperation experience for the teleoperator and allow for per-
forming complex tasks such as pick-and-place of underwater
objects.

ACKNOWLEDGMENTS

REFERENCES

[1] Alexander Barbie, Niklas Pech, Wilhelm Hasselbring,
Sascha Flogel, Frank Wenzhoefer, Michael Walter, Elena
Shchekinova, Marc Busse, Matthias Turk, Michael Hof-
bauer, and Stefan Sommer. Developing an underwater
network of ocean observation systems with digital twin
prototypes—a field report from the baltic sea. IEEE
Internet Computing, PP:1–1, 03 2021. doi: 10.1109/MIC.
2021.3065245.

[2] Andreas Birk, Tobias Doernbach, Christian Mueller,
Tomasz Łuczynski, Arturo Gomez Chavez, Daniel
Koehntopp, Andras Kupcsik, Sylvain Calinon, Ajay K
Tanwani, Gianluca Antonelli, et al. Dexterous underwater
manipulation from onshore locations: Streamlining effi-
ciencies for remotely operated underwater vehicles. IEEE
Robotics & Automation Magazine, 25(4):24–33, 2018.

[3] Bluerobotics Inc. Bluerov2. https://bluerobotics.com/
store/rov/bluerov2/, 2023. Accessed 2 February 2023.

[4] Juan Chen, Caiming Sun, and Aidong Zhang. Au-
tonomous navigation for adaptive unmanned underwater
vehicles using fiducial markers. In 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 9298–9304, 2021. doi: 10.1109/ICRA48506.2021.
9561419.

[5] Changhyun Chung and Motomu Nakashima. Develop-
ment of a swimming humanoid robot for research of hu-
man swimming. Journal of Aero Aqua Bio-mechanisms,
3(1):109–117, 2013.

[6] Dronecode Project, Inc. Qgroundcontrol. http://
qgroundcontrol.com/, 2023. Accessed 2 February 2023.

[7] William Galvani and Patrick Pereira. Bluesim. https:
//github.com/bluerobotics/bluesim, 2023. Accessed 23
February 2023.

[8] Ashiria Goel, Colin Szeto, Mabel Szeto, Rishi Veerepalli,
and Eesh Vij. Leveraging competitive robotics experience
to spread marine education. In OCEANS 2021: San Diego
– Porto, pages 1–9, 2021. doi: 10.23919/OCEANS44145.
2021.9705971.

[9] Kris Hauser. Recognition, prediction, and planning for
assisted teleoperation of freeform tasks. Autonomous
Robots, 35, 11 2013. doi: 10.1007/s10514-013-9350-3.

[10] Hemani Kaushal and Georges Kaddoum. Underwater
optical wireless communication. IEEE Access, 4:1518–
1547, 2016. doi: 10.1109/ACCESS.2016.2552538.

[11] Juan Linietsky and Ariel Manzur. Godot engine. https:
//github.com/godotengine/godot, 2022. Accessed 27
February 2023.

[12] Juan Linietsky and Ariel Manzur. Orca4. https://github.
com/clydemcqueen/orca4, 2022. Accessed 12 November
2022.

https://youtu.be/EXK2kUNe4rA
https://youtu.be/EXK2kUNe4rA
https://bluerobotics.com/store/rov/bluerov2/
https://bluerobotics.com/store/rov/bluerov2/
http://qgroundcontrol.com/
http://qgroundcontrol.com/
https://github.com/bluerobotics/bluesim
https://github.com/bluerobotics/bluesim
https://github.com/godotengine/godot
https://github.com/godotengine/godot
https://github.com/clydemcqueen/orca4
https://github.com/clydemcqueen/orca4

[13] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris
McClanahan, Esha Uboweja, Michael Hays, Fan
Zhang, Chuo-Ling Chang, Ming Yong, Juhyun Lee,
Wan-Teh Chang, Wei Hua, Manfred Georg, and
Matthias Grundmann. Mediapipe: A framework for
perceiving and processing reality. In Third Workshop on
Computer Vision for AR/VR at IEEE Computer Vision
and Pattern Recognition (CVPR) 2019, 2019. URL
https://mixedreality.cs.cornell.edu/s/NewTitle May1
MediaPipe CVPR CV4ARVR Workshop 2019.pdf.

[14] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós.
Orb-slam: A versatile and accurate monocular slam sys-
tem. IEEE Transactions on Robotics, 31(5):1147–1163,
2015. doi: 10.1109/TRO.2015.2463671.

[15] Paulo Padrao, Jose Fuentes, Tero Kaarlela, Alfredo
Bayuelo, and Leonardo Bobadilla. Towards optimal
human-robot interface design applied to underwater
robotics teleoperation, 2023.

[16] V. Ranadive and T. Sheridan. Video framerate, resolu-
tion and grayscale tradeoffs for undersea telemanipulator
control. In OCEANS 81, pages 1222–1222, 1981. doi:
10.1109/OCEANS.1981.1151520.

[17] Satja Sivčev, Joseph Coleman, Edin Omerdić, Gerard
Dooly, and Daniel Toal. Underwater manipulators: A
review. Ocean engineering, 163:431–450, 2018.

[18] Anne Wendt, Henrich Preuss, Wito Kleinhempel, and
Helge Renkewitz. Frankenstein goes swimming: Soft-
ware architecture of a modified bluerov2 heavy for
underwater inspection and maintenance. In OCEANS
2022, Hampton Roads, pages 1–5, 2022. doi: 10.1109/
OCEANS47191.2022.9977166.

https://mixedreality.cs.cornell.edu/s/NewTitle_May1_MediaPipe_CVPR_CV4ARVR_Workshop_2019.pdf
https://mixedreality.cs.cornell.edu/s/NewTitle_May1_MediaPipe_CVPR_CV4ARVR_Workshop_2019.pdf

	Introduction
	Related Work
	Methods
	Results
	Conclusion

