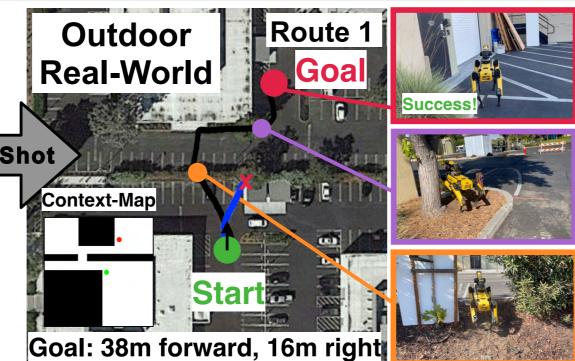
IndoorSim-to-OutdoorReal: Learning to Navigate Outdoors without any Outdoor Experience

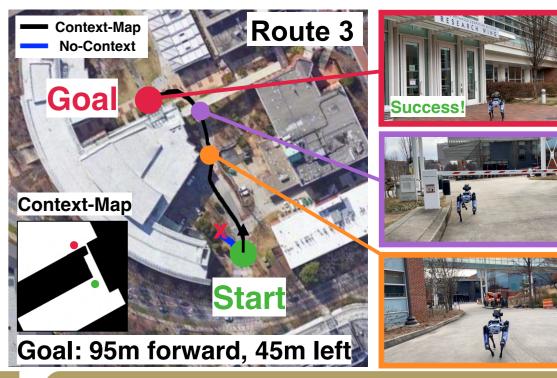
Google DeepMind


Joanne Truong^{1,2}, April Zitkovich², Sonia Chernova¹, Dhruv Batra^{1,3}, Tingnan Zhang², Jie Tan², Wenhao Yu²

¹ Georgia Tech, ² Google DeepMind, ³ Meta AI

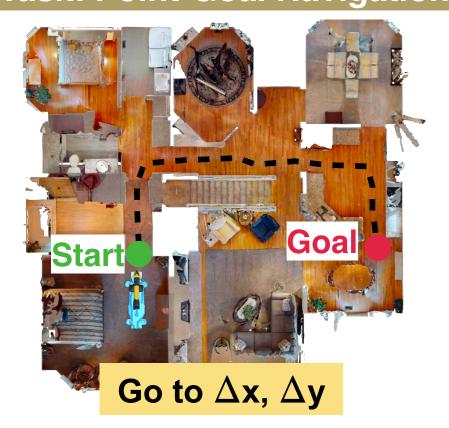
Satellite image

Digital Map


Human sketched

Automatically generated

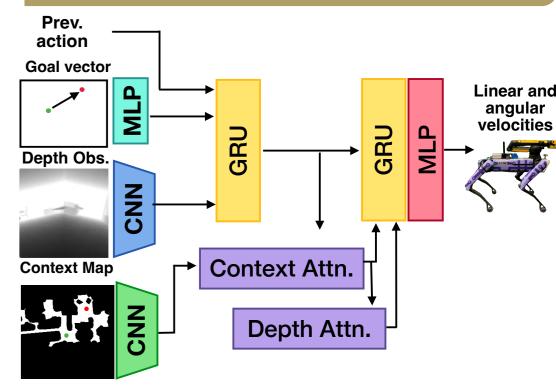
Context Map



Summary

- Autonomous long-range navigation (100 meters+) in novel outdoor environments
- Trained entirely in simulation of indoor environments (shortrange, on average ~8 meters), zero-shot sim-to-real transfer to the outdoors
- Robot operates using onboard sensors + a inaccurate high-level map (Context-Map)

Task: Point-Goal Navigation

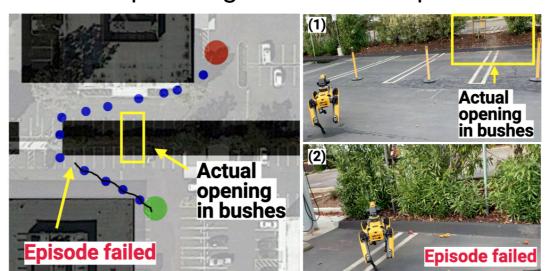


Navigate to a goal location in a novel environment

Context-Map

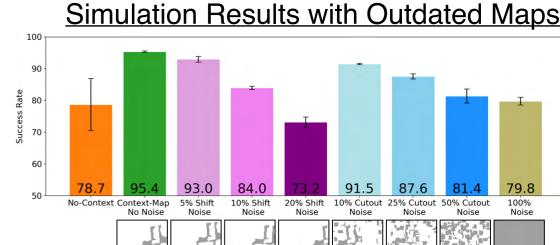
- Does not need to be accurate or complete
- Real-world obstacles (trees, bushes, cars, pedestrians, etc.) are not drawn on map
- Provides the robot with a hint to the goal
- Abstracted binary map can be used for both indoor and outdoor navigation
- In simulation: Freely accessible via topdown maps of indoor environments
- <u>In the real-world:</u> Generated via human sketching (top row), or automatically generated from satellite map (bottom row)

Model Architecture


- Egocentric images to avoid obstacles
- Context-Maps for high-level guidance

Real-World Results

Route #	Goal	Method	SR ↑	Distance Travelled (m) ↑
1	38m Forward,	No-Context	0.0	16.6±0.1
	16m Right	Context-Map	100.0	63.4±2.5
2	90m Forward,	No-Context	0.0	9.7±3.4
	30m Left	Context-Map	100.0	112.2 ±1.8
3	95m Forward,	No-Context	0.0	5.1±0.3
	45m Left	Context-Map	100.0	129.8 ±2.8


- 3 novel environments with various terrains (dirt slopes, grass, etc.)
- Context-Map policy: 100% success rate
- Policy without context fails completely
- Context-Map policy takes shortcuts not present in the map when vision senses free space

Classical planning + Context-Map baseline

- Classical approaches are sensitive to map input; cannot adapt to inaccuracies in Context-Map
- A perfect, always up-to-date map in the real-world is not realistic

Simulation Ablations

- Simulation evaluation with varying degrees of shift and cutout noise to Context-Map
- Context-Map policy is robust to noise
- At 100% noise, policy regresses to No-Context policy behavior