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Abstract—We present IndoorSim-to-OutdoorReal (I2O), an
end-to-end learned visual navigation approach, trained solely in
simulated short-range indoor environments, and demonstrates
zero-shot sim-to-real transfer to the outdoors for long-range
navigation on the Spot robot. Our method uses zero real-world
experience (indoor or outdoor), and requires the simulator to
model no predominantly-outdoor phenomenon (sloped grounds,
sidewalks, etc). The key to I2O transfer is in providing the
robot with additional context of the environment (i.e. a satellite
map, a rough sketch of a map by a human, etc.) to guide the
robot’s navigation in the real-world. The provided context-maps
do not need to be accurate or complete– real-world obstacles
(e.g. trees, bushes, pedestrians, etc.) are not drawn on the
map, and openings are not aligned with where they are in
the real-world. Crucially, these inaccurate context-maps provide
a hint to the robot about a route to take to the goal. We
find that our method that leverages Context-Maps is able to
successfully navigate hundreds of meters in novel environments,
avoiding novel obstacles on its path, to a distant goal without
a single collision or human intervention. In comparison, policies
without the additional context fail completely. We additionally
find that the Context-Map policy is surprisingly robust to noise.
In the presence of significantly inaccurate maps in simulation
(corrupted with 50% noise, or entirely blank maps), the policy
gracefully regresses to the behavior of a policy with no context.
Videos are available on our project website.

I. INTRODUCTION

Much of Earth’s landmass outdoors is occupied by chal-
lenging terrain that is inaccessible to wheeled robots. On the
other hand, humans and legged animals are able to explore
most of this landmass by finding stable footholds to navigate
through these challenging terrains. Legged platforms provide
robust locomotion, and have demonstrated successful sim2real
transfer in challenging and diverse terrain such as the outdoors
[1]–[4]. Alongside these advancements, recent works in deep
reinforcement learning have demonstrated success in training
virtual robots to navigate efficiently in simulation before trans-
ferring the learned skills to real-world environments [5]–[13],
on both wheeled and legged robots. These advances were made
possible due to the development of fast, scalable simulators
[10], [14]–[23] and the availability of large-scale datasets of
photorealistic 3D scans of indoor environments [24]–[26]. In
this paper, we seek to bring the same advancements made in
indoor visual navigation to the outdoors for legged robots.

Outdoor navigation with legged robots is different from in-
door navigation, and is relatively under-studied. While indoor
navigation typically span tens of meters, outdoor navigation
requires a robot to navigate hundreds of meters to travel from
one building to another. At this scale of navigation, taking

Fig. 1: We demonstrate zero-shot sim2real transfer for long-range
outdoor navigation on the Spot robot. One key ingredient is to
combine information from inaccurate high-level map (titled Context-
Map) and accurate but limited onboard sensing. The robot leverages
the map hint to navigate up the slope to the opening in the bushes
(orange), takes a shortcut between a tree and a wooden pole (blue)
that is not marked on the map but visible in egocentric images, to
successfully reach the goal position a distant building (red).

the wrong turn or backtracking can be costly, and simple
exploration methods can be inefficient.

We present IndoorSim-to-OutdoorReal (I2O), which enables
a quadrupedal robot to successfully navigate hundreds of me-
ters in novel outdoor environments, around previously unseen
outdoor obstacles (trees, bushes, buildings, pedestrians, etc.),
in different weather conditions (sunny, overcast, sunset) –
despite being trained solely in simulated indoor environments.
The robot has never seen any outdoor environments, and has
only been trained using short-range trajectories (∼ 8m).

We find that the key to enabling I2O is to provide the robot
with additional context of its environment (i.e. via a satellite
image, a rough sketch by a human, etc.), which allows the
learned policy to bias its search, obviating the need for costly
exhaustive search in the real-world. We provide additional
context to the robot through a rough human sketch to guide
the robot’s navigation. These Context-Maps do not need to be
accurate, but serve as a hint in the general directions that the
robot should explore. These sketches enable a human user to
specify obscure paths that may be difficult for the robot to find,
or paths that are not visible in satellite images (i.e. a small
opening through bushes shown in Figure 1). the robot must
learn to use the maps in conjunction with observations from its
onboard cameras to adapt to on-the-ground reality – avoiding
obstacles not drawn on the map (bushes, chairs, people).

In our experiments, we find that the robot with the Context-
Map is able to navigate hundreds of meters to a distant goal
without a single collision or human intervention. In contrast,

https://i2o-spot.github.io/


without the additional context, the robot completely fails at
navigating long-ranges outdoors, and is only able to make
minor progress towards the goal before getting stuck around
obstacles. We conduct a comprehensive quantitative analysis
in simulation, and demonstrate that in indoor environments,
the additional context can improve success rate by 17%, and
improve path efficiency by 22%. Additionally, we find that
the Context-Map policy is surprisingly robust to noise in
the provided Context-Map. When the maps are inaccurate
(corrupted with 50% noise, or an entirely blank map), the
performance of the policy gracefully regresses back to the
performance of policies trained without any context.

II. INDOORSIM-TO-OUTDOORREAL TRANSFER

Task. In PointGoal Navigation (PointNav) [27], a robot is
initialized in a novel environment and needs to navigate to
a goal location. The robot has access to egocentric RGB-
D observations, and an egomotion sensor. An episode is
successful if the robot reaches within 0.425m of the goal.
Dataset. We use the Habitat-Matterport (HM3D) [24] and
Gibson [28] 3D datasets, which consists of over 1000 scans of
real-world indoor environments consisting of realistic clutter.

A. Context-Guided PointGoal Navigation

We aim to leverage context information freely accessible
through public map services for long-range PointNav outdoors,
which we denote as Context-Guided PointNav (ContextNav).

Fig. 2: Using a satellite image of the area from Google Maps (left), a
human operator sketches a rough Context-Map for the robot (middle).
Notice how defective the map is (right): large parts or entire buildings
are missing, no roads or sidewalks are shown; but crucially, the map
contains a hint for an opening to get to the goal.

We provide the robot with context in the form of an outdated
map (Context-Map). The Context-Map input does not need
to be very accurate, but should serve as a rough guide for
general directions that the robot should explore (i.e. a satellite
map showing roughly where buildings are). Consequently, the
robot must use observations from its camera to adapt to novel
obstacles or clutter present in the environment but absent on
the map, and be willing to take shortcuts available in the
world but shown as obstacles on the map. We represent the
map as a top-down occupancy map, which can be obtained
in the real-world by converting a satellite image to illustrate
occupied and freespace through a human sketch, or through an
automated process. Using a binary occupancy map provides a
few benefits over directly using satellite images. An abstracted
binary map allows the maps to be used for both indoor and

Fig. 3: The Context-Guided PointNav architecture. We use a CNN to
process the Context-Map, and a GRU to process the attended features.

outdoor navigation, while satellite images are only applicable
to outdoor navigation. Additionally the human operator can
give hints to the robot about paths that may not be easily
visible in the satellite image, or from the robot’s initial position
(i.e. openings in bushes). In our experiments, we use human-
sketched Context-Maps, however these maps can easily be
generated automatically by postprocessing a digital map.
Policy Architecture. We train a high-level visual naviga-
tion policy entirely in simulation using deep reinforcement
learning. The No-Context policy architecture takes as input
an egocentric depth image, a goal vector, and the action at
the previous timestep. The goal vector is represented as the
distance and heading relative to the robot’s current pose. The
output of the policy is the desired center-of-mass linear and
angular velocities (vx, ω) for the robot to follow. The depth ob-
servations are processed using a 3-layer CNN visual encoder,
and the goal vector is encoded using a linear layer. These
features are fed into a 1-layer GRU, followed by a single linear
layer which parameterizes a Gaussian action distribution from
which the action is sampled. Next, to incorporate additional
context information for ContextNav we use freely accessible
top-down maps of indoor environments in simulation. The
Context-Map is represented as a 2×100×100 matrix. The first
channel of the map is an egocentric occupancy map, in which
the cells denote obstacles (0) or freespace (1). The second
channel of the map illustrates the agent’s current location in the
map and the location of the goal coordinate with a small disk
(1), and 0 otherwise. We process the map context inputs using
a ResNet18 visual encoder [29]. We compute the scaled dot-
product attention [30] between the depth and context features,
and pass the attended features into a second GRU.

B. Techniques to Aid IndoorSim-to-OutdoorReal Transfer.

Indoor-to-Outdoor Transfer. Two of the main differences be-
tween indoor and outdoor navigation are 1) navigation length
(short vs. long), and 2) terrain type (flat vs. rocky/sloped).
First, we found that traditional PointNav policies were highly
sensitive to the goal vector. Since the policies were only
trained in simulation, and typically see trajectories ∼8m away,
the policies failed to generalize to longer-range goals. We
normalize the goal vector by using the log of the goal distance,



Fig. 4: We test our policies in 3 novel environments in the real-world. The routes contain many obstacles including bushes, buildings, cars
and pedestrians that the robot has never seen during training. The Context-Map policies (black) are able to navigate hundreds of meters to
reach the goal 100% of the time. In comparison, the No-Context policies (blue) beeline towards the goal, resulting in episode failures.

which enabled longer-range navigation. Next, we found that
naively trained PointNav policies had difficulty navigating up
slopes. Since slopes are infrequent in indoor environments,
slopes outdoors appear as a large obstacle in the robot’s depth
camera, and thus the robot avoids walking up the slope. To
enable the robot to walk up and down slopes in the real-
world, we artificially add slopes to the robot’s observation by
randomizing the pitch of the camera during training by ±30◦.
Sim-to-Real Transfer. In simulation, instead of modeling
the robot’s low-level control, we use kinematic control as an
approximation for the robot’s movement. In kinematic control,
the robot is moved to its next state via Euler integration at 2Hz
without running full rigid-body physics. Kinematic control
leads to better sim-to-real transfer through faster simulation,
as compared to dynamic control [9]. Next, we filter the depth
images from Spot’s depth cameras in the real-world to better
match observations from simulation. We use depth completion
from [31] to fill in holes and smooth the image. Additionally,
we set the pixels further away from the max depth range
(3.5m) to white to match simulation. Lastly, we add Random
Erasing noise [32] to our depth images during training to
improve the robustness to missing pixels in the real-world.

III. RESULTS

A. Zero-shot IndoorSim-to-OutdoorReal Navigation

In our experiments, we use the Boston Dynamics (BD)
Spot robot. Our navigation policy outputs velocity commands,
and we rely on BD’s low-level controller for movement. We
task the robot with navigating to 3 long-range goals outdoors
(shown in Figure 4), with many real-world obstacles present
(bushes, buildings, cars, tables, pedestrians, etc.).
No-Context Real-world Outdoor Navigation. First, we test
to see if policies with No-Context can directly transfer to long-
range navigation outdoors. The outdoor routes are complex
and there does not exist a straight-line path to the goal; the
robot is required to navigate around large obstacles to reach
the goal successfully. We find that the No-Context policy
immediately makes a beeline towards the goal using the goal

vector for guidance. In indoor environments, there are more
obstacles around the robot, such as walls, that guide the robot
to avoid making a beeline to the goal. In the outdoors however,
the robot makes a beeline presumably led by the depth sensors
that indicate plenty of free-space around the robot. This leads
the robot to wander into obstacles such as bushes, resulting
in unsuccessful episodes. The No-Context policy completely
fails to navigate in all three routes, each only making minor
progress to the goal before an episode failure (Table I).

Route # Goal Method SR ↑ Distance
Travelled (m) ↑

1 38m Forward, No-Context 0.0 16.6±0.1

16m Right Context-Map 100.0 63.4±2.5

2 90m Forward, No-Context 0.0 9.7±3.4

30m Left Context-Map 100.0 112.2±1.8

3 95m Forward, No-Context 0.0 5.1±0.3

45m Left Context-Map 100.0 129.8±2.8

TABLE I: We test the No-Context and Context-Map policies on 3
long-range outdoor routes (Figure 4).

Context-Guided Real-world Outdoor Navigation. Next, we
test our Context-Map policy outdoors. We provide the robot
with rough sketches indicating preferred paths for the robot to
take for each route (Figure 4). Obstacles such as cars, trees,
or chairs are not shown on the map, and only rough hints for
an opening to the goal is depicted. We find that the Context-
Map policy is able to leverage the Context-Maps to bias its
search during outdoor navigation, and successfully reach the
distant goal location 100% of the time (Table I), without a
single collision or human intervention. With our approach, the
robot was able to navigate around dynamic obstacles such as
pedestrians despite these obstacles not being drawn directly
on the Context-Map. Our approach is also not limited to 2D
navigation; the robot navigates up slopes (Route 1), and can
navigate in various terrains types. Our policies are also able
to maintain a balance between the Context-Maps, and what it
sees in its visual inputs. The robot leverages depth images to
avoid clutter or dynamic obstacles, and Context-Maps are used
for high-level guidance. While Context-Maps provide a means



for the operator to specify a preferred route for the robot to
take, the robot may take shortcuts along the way that are not
present in the map when its vision senses freespace.

Fig. 5: Left: We run RRT* on an outdated Context-Map to find
waypoints (blue) to the goal. We pass the waypoints to a policy to
follow (black). Right: The waypoints lead the robot past the opening
in the bushes (1), leading to a failure (2).
Traditional Planning Real-world Outdoor Navigation.
Lastly, we test to see if classical approaches can be used
for outdoor navigation by planning directly on the exact
same outdated, inaccurate Context-Map. We run RRT* on
the Context-Map to generate a list of waypoints to the goal.
These waypoints are then used with a policy trained in
simulation to follow waypoints along the shortest route to the
goal. We find that the policy is able to successfully navigate
to each successive waypoint. However, the robot ended up
missing the actual opening in bushes because the waypoints
were generated from an outdated map (shown in Figure 5).
This confirms our conjecture that classical planning based
approaches are highly sensitive to the map input, and are not
able to adapt to inaccuracies. In the real-world, creating a
perfect, and always-up-to-date map is not realistic.

B. Simulation Results

Indoor Navigation. We find that the Context-Map policies
achieve high success rate and SPL (95.4 SR and 81.0 SPL;
Table II, row 2), demonstrating that the policy is able to utilize
its given Context-Map to navigate to the goal. In contrast, the
No-Context policies achieve a lower success rate of 78.7%
(-16.7% SR). We also see a +24.6% SPL between the two
policies, demonstrating that the robot can navigate to the goal
more efficiently using the added context. These experiments
demonstrate that Context-Map policies are capable of complex
navigation through multiple cluttered indoor rooms.

Method SR ↑ SPL ↑

No-Context 78.7±8.2 56.4±4.4

Context-Map 95.4±0.2 81.0±2.4

TABLE II: The policy using Context-Maps outperforms the No-
Context policy (+16.7% SR, +24.6% SPL).
Indoor Navigation using Outdated Maps. We test the
robustness of our policy by adding varying degrees of noise
to the Context-Map, shown in Figure 6. We use: (1) Shift
noise, which randomly shifts the map provided to the robot in
any direction to simulate localization errors. (2) Cutout noise,
which randomly adds patches of free or obstacle space to the

map. This simulates giving the robot a outdated map (i.e. a
map with additional or missing obstacles in the environment).

Fig. 6: We degrade the top-down map with shift and cutout noise.

We find that our approach, trained entirely using perfect
maps, is surprisingly robust to the noisy maps. At 50% cutout
noise, the original top-down map is barely visible (Figure 6),
and planning algorithms would be unable to find any feasible
path to the goal. In contrast, our policy is still able to navigate
to the goal successfully 81.4% of the time (Table III, row
7). When the Context-Map policy is given a map that is
completely freespace (100% noise, Table III row 8) the policy
behavior regresses to the No-Context policy (79.8 vs. 78.7 SR,
and 59.8 vs. 56.4 SPL). Thus, our approach exhibit the best
of both worlds – utilizing the information in the map when
it’s available but never underperforming a map-free approach.

# Eval Noise SR ↑ SPL ↑
Type Percent

1 - - 95.4±0.2 81.0±2.4

2
Shift

5% 93.0±0.9 75.1±2.4

3 10% 84.0±0.5 62.5±2.3

4 20% 73.2±1.6 51.6±1.1

5
Cutout

10% 91.5±0.2 72.3±2.2

6 25% 87.6±0.8 67.4±2.3

7 50% 81.4±2.2 60.0±1.0

8 100% 79.8±1.2 59.8±0.9

TABLE III: Context-Map policies trained with perfect maps are
surprisingly robust to outdated maps.

IV. CONCLUSION

In this work, we present a framework for IndoorSim-to-
OutdoorReal transfer for navigation. Keys to the system’s
success are a set of sim-to-real techniques that enable the
policy to handle real outdoor environments, as well as the
addition of context in the form of a rough sketch provided
by a human, which guides the robot’s navigation. Our results
provide compelling evidence for rejecting the (admittedly
reasonable) hypothesis that a new simulator must be designed
for every new scenario we wish to study. This is especially
important for environments that are challenging to design
in simulation, such as the outdoors. This work opens up
navigation research to the less explored domain of the rich
and diverse outdoors environments.
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