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Abstract—Construction automation plays a pivotal role in
enhancing efficiency, reducing costs, and ensuring safety within
the construction industry. This paper highlights our latest ad-
vancements in the realm of autonomous excavator systems (AES)
specifically designed for earth moving operations at construction
sites. Our proposed architecture integrates cutting-edge technolo-
gies such as LiDAR and cameras based multi-modal perception,
state-of-the-art localization and mapping, object detection, ter-
rain traversability mapping, motion planning, and navigation al-
gorithms. Currently, our AES demonstrates proficiency in execut-
ing three construction earth moving tasks: truck loading, trench-
ing, and unstructured terrain navigation. To showcase its perfor-
mance, we conducted a live demonstration (Fig. 1) where all three
tasks were seamlessly completed consecutively without human
intervention, highlighting its exceptional effectiveness and ro-
bustness. Furthermore, we have incorporated an emergency stop
feature to enhance safety during navigation, automatically halting
the excavator upon detecting obstacles along its future path. To
the best of our knowledge, this represents the first autonomous
excavator system with the capability to seamlessly perform
multiple construction earth moving tasks. Experiment video is
available at https://www.youtube.com/watch?v=mMPLjP5OVNk.

I. INTRODUCTION

The construction industry heavily relies on earth moving for
constructing essential infrastructures like roads, bridges, and
skyscrapers [1, 2, 6, 7, 9, 11, 12]. As automation technolo-
gies advance, there is increasing demand for automation in
earth moving within the construction industry. Earth moving
automation enhances productivity by automating machinery,
particularly excavators, resulting in more efficient completion
of construction projects with reduced errors and manual la-
bor. Furthermore, automation improves operational safety in
construction sites known for their hazards, including heavy
machinery, unpredictable terrain, and tight deadlines. Integrat-
ing automated earth-moving equipment, such as excavators,
minimizes human errors, mitigates injury risks, and creates a
safer working environment for construction workers.

In this research paper, we present an expansion of our
previous work on the Autonomous Excavator System (AES)
[3, 5, 10, 13, 14] designed specifically for construction earth
moving tasks. In April 2023, we successfully conducted a
live demonstration (Fig. 1) in collaboration with a prominent
construction partner in Guangzhou, China. The demonstration
showcased various earth moving activities including truck
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Fig. 1: A live demonstration highlighting our autonomous
excavator system’s performance together with a leading con-
struction cooperator in Guangzhou, China, April 2023. The
autonomous excavator is able to seamlessly complete three
tasks including truck loading, navigation, and trenching in
construction scenarios. No human operator is in the excavator,
as shown in the red bounding box.

loading, terrain navigation, and trenching. Notably, our au-
tonomous excavator performed these tasks seamlessly with-
out human intervention, demonstrating the system’s efficacy
in earth moving operations. It’s worth mentioning that the
demonstration took place in a controlled working area without
other vehicles or workers, as the system was not actively mon-
itoring obstacles during navigation. To enhance the system’s
reliability and safety, we recently implemented an emergency
stop feature that continuously monitors potential obstacles
along the planned trajectory and initiates a stop command
when necessary.

II. AUTONOMOUS EXCAVATOR SYSTEM

A. System Overview

As illustrated in Fig. 2, our core algorithms primarily
consist of three essential modules: perception, planning, and
control. The perception module is designed to sense various
obstacles, model the terrain, classify materials, and locate the
dump truck. Utilizing data from the perception module, the
planning module generates optimal motion trajectories for the
excavator’s arms and base. Subsequently, the control module
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Fig. 2: The key modules and their main functions in the core
algorithms of our autonomous excavator system.

produces hardware control commands based on the planning
module’s output, which are relayed to the excavator to track
the desired motions. Moreover, the application layer in our
system continually adjusts other modules based on specific
applications to ensure smooth operation. In the following
sections, we delve deeper into the perception, planning, and
navigation modules, which are the critical components that
enable our system to be implemented in real-world scenarios.

B. Perception System

The perception system, which comprises a 3D LiDAR
sensor and a 2D RGB camera, enables us to comprehend
the work environment while precisely guides the excavator to
pinpoint the task areas. As shown in Fig. 2, the major functions
of the perception system includes: Localizing the excavator,
constructing the terrain traversal mapping, estimating the truck
pose, and measuring the terrain.

To enhance localization accuracy and excavator control,
we utilize a saved global point cloud map to match LiDAR
scanning data, enabling the excavator to estimate its position
and assess terrain for navigation and excavation (Fig. 3).
For rapid truck detection, we employ a customized object
detection module using RGB camera images. The identified
truck’s 3D point cloud data from LiDAR is used for pose
estimation, crucial for determining the appropriate dumping
location. Additionally, LiDAR data generates an elevation
map, allowing effective digging strategy planning based on
sensor feedback and operator-defined task regions.

C. Hierarchical Planning and Control System

We develop a hierarchical planner architecture for general
excavation applications. The planner includes high-level task
planner layer, sub-task planners layer, and motion primitives
layer. In most scenarios, the excavator alternates between the
motion of its arm to perform the excavation operation and
the moving of the base to the desired position. The high-
level task planner determines the locations where the excavator
needs to navigate to and the regions to be excavated. The sub-
tasks planners deal with sub-tasks, namely Material Removal
Sub-tasks planner for completing the sub-region excavation

Fig. 3: A 360-degree scanning is initially performed to obtain
the excavator location and the surrounding environment. The
scanning result is mapped to the saved global map to determine
the location of the excavator.

efficiently and accurately, and Base Move Sub-tasks planner
for planning the trajectory of the excavator to move to the
desired locations. Finally, the motion primitive layer generates
feasible excavator arm and base motion. Please refer to [13]
for more details.

D. Terrain Traversability based Navigation

We use an efficient semantic-geometric fusion method [3]
to extract a traversability map representation, which leverages
the physical and computational constraints of the robot, in-
cluding maximum climbing degree, width of the body, run-
time computational budget, etc. In our approach, The terrain
is represented as an elevation grid map and is updated in
real-time based on incoming point clouds and RGB images.
Internally, each grid cell in the map stores the average height
value of the latest points within this cell, as well as overall
information about those points like update time, slope, step
height, and their semantic information. We first define critical
ranges based on the excavator’s capability of surmounting
tough terrains. Whenever the geometry of the terrain is out
of that range, we would assign bad traversability score on that
region. When the terrain score is in a reasonable range, we
fine-tune the weight for geometry and semantic of the terrain
such that the final traversability map is useful for trajectory
planning.

A trajectory is planned based on the traversability map,
and the control system ensures the trajectory is followed in
real-world scenarios. The planner also limits the trajectory’s
curvature with hybrid A∗ algorithm to prevent the excavator
from becoming stuck in soft terrain.

E. Emergency Stop

When the AES is following the trajectory during terrain
navigation tasks, the planner does not monitor the surrounding
obstacles or re-plan the trajectory to avoid potential colli-
sions. Therefore, we recently added another safety layer to
our system by implementing a stand-alone emergency stop
module which immediately terminates the navigation planner
and controller if an obstacle is detected near the path of the
excavator.



Fig. 4: Overview of Local Obstacle Map Generation

The emergency stop module replies on a local occupancy
map around the excavator developed based on the idea found in
[8] which bins the points in each scan into different sectors and
determine the ground plane for each sector. From the ground
plane in each sector, we can segment the non-ground points
through a threshold height, and determine them to be either a
positive or negative obstacle.

These ground and non-ground points are then converted to
a 2D occupancy map with the Octomap library [4]. With the
generated local map (Fig. 4) of the front of the excavator, we
constantly check the path of the excavator and raise a stop
command if an obstacle large enough intersects with the path.

III. EXPERIMENTS

We conducted a live demonstration showcasing autonomous
truck loading, terrain navigation, and autonomous trenching
(Fig. 1). These tasks were seamlessly executed without human
intervention, as shown in snapshots (Fig. 7). Additionally,
we validated our semantic-geometric traversability mapping
module and emergency stop feature at a separate test site.
For the demonstration, we used a 7.5-ton hydraulic excavator
with a drive-by-wire system, controlled by software via a
CAN bus interface. The platform’s sensing capabilities were
enhanced with multiple sensors, including real-time kinematic
(RTK) GPS, inclinometers, LiDAR, and RGB cameras. The
traversability mapping module and emergency stop feature
were tested on another 20-ton hydraulic excavator sharing the
same sensor setup.

A. Autonomous Truck Loading

Fig. 5: Autonomous truck loading. During the operation, the
3D truck pose is estimated as shown in the upper-right window,
and the task area is designated as a red box as shown in the
lower-right window.

Autonomous truck loading is a highly desirable feature in
construction due to its repetitive and time-consuming nature.
The objective of this task is to accurately identify the desig-
nated digging area and the truck pose for dumping by utilizing
the perception system introduced in Sec.II-B, as illustrated in
Fig. 5.

In this task, a 2m × 3m × 1m box is defined at a 45-
degree angle by the excavator for digging. The dumping area
is determined by the 3D truck pose. Our planning also takes
the truck geometry into account to avoid possible collisions.

The root-mean-square tracking errors of the excavator
bucket are (0.167, 0.135, 0.282) m in the x-, y-, and z-axes,
respectively. These errors primarily stem from the coupling
effects between hydraulic joints. While these errors are ac-
ceptable for task completion, there is potential for improving
our controller design to achieve higher accuracy. Our AES
demonstrates consistent performance over time, unlike the
potentially variable performance of human operators. These
results emphasize the potential of AES in enhancing efficiency
and reducing the workload for human operators.

B. Autonomous Trenching

Fig. 6: Autonomous
trenching. The goal is to
excavate a 1m×1m×6m
area as shown in the red
cuboid.

Excavator trenching has a wide
range of applications in con-
struction and civil engineering
projects, including the installation
of underground utilities, excava-
tion for drainage systems, land-
scaping, and road construction. In
the autonomous trenching task,
we demonstrate the ability to ex-
cavate a trench (Fig. 6). The ob-
jective of the task is to remove
soil within a cuboid-shaped area.
This can be accomplished by di-
viding the trench task into mul-
tiple sub-tasks along the length
with the high-level task planner.
The excavator then autonomously
selects the dig points within each
sub-task area based on the ele-
vation map generated by the per-
ception system. The soil is exca-
vated through a series of ‘dig-and-
dump’ loop until the predetermined height criteria is met. The
excavator moves on to the next sub-task once a sub-task is
completed, until the entire trench task is finished [13].

Fig. 6 displays the result of excavating a 1m × 1m × 6m
area, with each sub-task being 1m × 1m × 2m. The trench
task is divided into 5 sub-tasks, with an 1m overlap between
adjacent sub-tasks. On average, it takes 5 ‘dig-and-dump’
loops to complete a sub-task, and each ‘dig-and-dump’ loop
has an execution time of 24.2 seconds. The entire trench task,
including the base movement, is completed in 11.78 minutes.
The average depth error in the trench is 0.020± 0.101m.



Fig. 7: Snapshots of the experiments. (1) Autonomous truck loading; (2) Terrain navigation; (3) Autonomous trenching.

C. Terrain Navigation

Fig. 8: Traversability mapping for navigation. Bottom-Left:
camera image; Bottom-Right: segmentation result is shown by
color; Top: accumulated traversability map, purple (1) means
traversable, red (0) means non-traversable.

With terrain traversability evaluation, our navigation system
allows the excavator to move autonomously and safely through
rugged terrain while avoiding obstacles, detecting changes in
the environment, and accurately positioning itself for digging
or other tasks. Fig. 8 shows the semantic-geometric based
traversability map obtained by moving the excavator within
the work site. The segmentation result is shown in the lower-
left image with the final accumulated traversability map in the
right plot. The final traversability score is calculated based on
the algorithms in [3]

During the live demonstration, the human operator defines
the target location of the excavator according to the construc-
tion task and inputs the coordinate to the system through

the user interface. For this specific construction work, the
excavator is required to move from the truck loading point 1
to the trench start point 3 automatically after the truck loading
task is completed, as shown in Fig. 1 and 7.

Fig. 9: Navigation from the truck loading position to the
trench position, then reversing 4 times during trenching: The
green line is the excavator’s actual position. The orange line
is the planned trajectory. The orange crosses indicate the
intermediate goals where the excavator needs to stop.

The trajectory tracking results of the live demonstration are
presented in Fig. 9. The lateral tracking error is defined as
the distance between the excavator’s current position and its
closest point on the desired trajectory. The maximum tracking
error is less than 0.35m and occurs when the excavator is
turning sharp turns on the soft terrain. The tracking error is
less than 0.3m during about 90% of the time and less than
0.1m during 50% of the time.

D. Emergency Stop

Emergency stop plays a vital role in safe navigation on
complex and changing terrain. To validate the functionality
of the emergency stop system during navigation, we set up a
scenario where the excavator path passes through an obstacle.
The obstacle, a stationary wheel loader seen in Figure 10,
was stationed between the excavator starting point and the
goal point. During navigation, the local map generated showed
the obstacle moving towards excavator as the excavator drives



forward. For reference, the origin of the local map is defined
as the center of the excavator, which has a track length of
4m and a minimum front swing radius of 3m. The obstacle,
on entering the preset safety zone - defined as a 6m by 4m
rectangle in front of the excavator (green area seen in Figure
10), resulted in a stop command being issued by the emer-
gency stop system to the controller. The excavator stopped
immediately during the test with a distance of approximately
2m between the from to the excavator and the obstacle. The
emergency stop tests were repeated successfully with objects
of various sizes, down to a footprint of 0.5m in diameter.

Fig. 10: Excavator Emergency Stop Demonstration

IV. CONCLUSION

In this paper, we present our recent progress in developing
an autonomous excavator system for construction earth mov-
ing. Our system integrates advanced perceptions, planning, and
control algorithms that are specifically tailored to construction
earth moving tasks. The system’s effectiveness and robustness
were demonstrated through a successful live demonstration of
its capabilities in truck loading, navigation, and trenching.

In the future, we plan to further enhance the system’s
capabilities to handle a broader range of scenarios, including
excavating fragmented rocks and operating in challenging
weather conditions. We also aim to optimize the system’s
robustness and reliability and deploy it in real construction
projects.
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